If it's not what You are looking for type in the equation solver your own equation and let us solve it.
41u^2+7u=0
a = 41; b = 7; c = 0;
Δ = b2-4ac
Δ = 72-4·41·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7}{2*41}=\frac{-14}{82} =-7/41 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7}{2*41}=\frac{0}{82} =0 $
| 11=x*1.25 | | 25x+2=15x-12 | | x+x+35=37 | | z+z+18=28 | | -16=b/4-17 | | P^-2+10p^-1-11=0 | | 6=f/4+3 | | 7x^-40x^-12=0 | | 4g+6=10 | | 3(r+6)=40 | | 2=-3t+-16 | | 3.9=r/8 | | v/4+-13=-9 | | y=4.75(2) | | 4x-6x+3x=2 | | 6r=17.4 | | -3t+8=17 | | 35-6d=50 | | 7+2g=17 | | 6(-2x-4)=-36 | | 8-4q=-12 | | n/3-15=-12 | | 3/5y+3=11+1/5 | | -8x=12x+16 | | 4x-3=-2x+23 | | 2(7y-1)=10 | | -5x+4=-4x-2 | | 2x2-5=2x | | (50-2x)(30-2x)x=1500 | | 2x^2+20x+90=0 | | 6v=-7 | | 25f=18 |